Mass-spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation

, ,

bioRxiv. Cold Spring Harbor Labs Journals (2017) .

Cold Spring Harbor Labs Journals

Abstract

Cellular heterogeneity is important to biological processes, including cancer and development. However, proteome heterogeneity is largely unexplored because of the limitations of existing methods for quantifying protein levels in single cells. To alleviate these limitations, we developed Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS), and validated its ability to identify distinct human cancer cell types based on their proteomes. We used SCoPE-MS to quantify over a thousand proteins in differentiating mouse embryonic stem (ES) cells. The single-cell proteomes enabled us to deconstruct cell populations and infer protein abundance relationships. Comparison between single-cell proteomes and transcriptomes indicated coordinated mRNA and protein covariation. Yet many genes exhibited functionally concerted and distinct regulatory patterns at the mRNA and the protein levels, suggesting that post-transcriptional regulatory mechanisms contribute to proteome remodeling during lineage specification, especially for developmental genes. SCoPE-MS is broadly applicable to measuring proteome configurations of single cells and linking them to functional phenotypes, such as cell type and differentiation potentials.



Add your rating and review

If all scientific publications that you have read were ranked according to their scientific quality and importance from 0% (worst) to 100% (best), where would you place this publication? Please rate by selecting a range.


0% - 100%

This publication ranks between % and % of publications that I have read in terms of scientific quality and importance.


Keep my rating and review anonymous
Show publicly that I gave the rating and I wrote the review