Characterization of Atomic and Physical Properties of Biofield Energy Treated Manganese Sulfide Powder

, , , , , ,

American Journal of Physics and Applications, 3(6), 215-220 (2015) .


Manganese sulfide (MnS) is known for its wide applications in solar cell, opto-electronic devices, and photochemical industries. The present study was designed to evaluate the effect of biofield energy treatment on the atomic and physical properties of MnS. The MnS powder sample was equally divided into two parts, referred as to be control and to be treated. The treated part was subjected to Mr. Trivedi’s biofield energy treatment. After that, both control and treated samples were investigated using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and electron spin resonance (ESR) spectroscopy. The XRD data revealed that the biofield energy treatment has altered the lattice parameter, unit cell volume, density, and molecular weight of the treated MnS sample as compared to the control. The crystallite size on various planes was significantly changed from -50.0% to 33.3% in treated sample as compared to the control. The FT-IR analysis exhibited that the absorption band attributed to Mn-S stretching vibration was reduced from (634 cm-1) to 613 cm-1 in treated MnS as compared to the control. Besides, the ESR study revealed that g-factor was reduced by 3.3% in the treated sample as compared to the control. Therefore, the biofield energy treated MnS could be applied for the use in solar cell and semiconductor applications.

Add your rating and review

If all scientific publications that you have read were ranked according to their scientific quality and importance from 0% (worst) to 100% (best), where would you place this publication? Please rate by selecting a range.

0% - 100%

This publication ranks between % and % of publications that I have read in terms of scientific quality and importance.

Keep my rating and review anonymous
Show publicly that I gave the rating and I wrote the review